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Instrumentation and 

Measurements 

ENEE4304 

 

 

 L4 

Dynamic-Performance-
Characteristics 

 

 

Dynamic Performance 

 The dynamic characteristics of a 
measuring instrument describe its 
behavior between the time a 
measured quantity changes value and 
the time when the instrument output 
attains a steady value in response. 

 Because dynamic signals vary with 
time, the measurement system must 
be able to respond fast enough to 
keep up with the input signal.  

 Further, we need to understand how 
the input signal is applied to the 
sensor because that plays a role in 
system response. 
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Zero Order Systems 

Non-Zero Order Systems 

1st order 

2nd order 

…. 

Nth order 

 

• In any linear, time-invariant measuring system, the 

following general relation can be written between input 

and output for time t > 0: 

 

 

 

 

• where qi is the measured quantity, q0 is the output 

reading and a0 . . . an, b0 . . . bm are constants. 

• only certain special, simplified cases of it are applicable 

in normal measurement situations.  

• The major point of importance is to have a practical 

appreciation of the manner in which various types of 

instruments respond when the measurand applied to 

them varies. 
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• If we limit consideration to that of step changes in the 

measured quantity only, then equation reduces to: 

 

 

 

 

• Further simplification can be made by taking certain 

special cases the equation, which collectively apply to 

nearly all measurement systems. 

Mechanical Zero-Order Systems 
 The simplest model of a measurement 

system is the zero-order system model.  

 This is represented by the zero-order 
differential equation: 

 

 

 

 K is the static sensitivity or steady gain of the 
system.  

 It is a measure of the amount of change in 
the output in response to the change in the 
input. 
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Mechanical Zero-Order Systems 

In a zero-order system, the 
output responds to the input 
signal instantaneously. 

If an input signal of 
magnitude f(t) = A   were 
applied, the instrument would 
indicate KA.   

The scale of the measuring 
device would normally be 
calibrated to indicate A 
directly. 
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Electrical Zero-Order Systems 
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Zero Order Systems 

 In general, systems without a 
storage or dissipative capability 
may be modeled as zero order 
system 

Input 

Output 

Non-zero Order Systems 

 Measurement systems that contain 
storage or dissipative elements do not 
respond instantaneously to changes in 
input.  

 In the bulb thermometer,  when the 
ambient temperature changes, the 
liquid inside the bulb will need to store 
a certain amount of energy in order for 
it to reach the temperature of the 
environment.   

 The temperature of the bulb sensor 
changes with time until this equilibrium 
is reached, which accounts physically 
for its lag in response.  
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Non-zero Order Systems 

 In general, systems with a 
storage or dissipative capability 
but negligible inertial forces may 
be modeled using a first-order 
differential equation. 

Input 

Output 

First Order Systems 
 Consider the time response of a bulb thermometer for 

measuring body temperature.  

 The thermometer, initially at room temperature, is placed 
under the tongue.  

 Body temperature itself is constant (static) during the 
measurement, but the input signal to the thermometer is 
suddenly changed from room temperature to body 
temperature.  This, is a step change in the measured 
signal.  

 The thermometer must gain energy from its new 
environment to reach thermal equilibrium, and this takes 
a finite amount of time.  

 The ability of any measurement system to follow dynamic 
signals is a characteristic of the measuring system 
components. 

Body 
Temperature 

Room 
Temperature 

t 

time 
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First Order Systems 

 Suppose a bulb thermometer originally at 
temperature To is suddenly exposed to a 
fluid temperature T∞.  

 Develop a model that simulates the 
thermometer output response. 

 Rate of energy stored = Rate of energy in 
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 m- Mass  

 Cp- specific heat 

 A- contact area ; h – heat 
transfer coeff. 

First Order Systems 

 

 

 

 

 

 The ratio mCp/hA has a units of seconds 
and is called the time   constant , τ.   

 m- sensor mass  

 Cp- specific heat of sensor material 

 A- contact area ; h – heat transfer coeff. 
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1st Order Systems 

 Examples: 

 Bulb Thermometer 

 RC Circuits 

 Terminal velocity 

 

 Mathematical Model: 
 

𝜏
𝑑𝑥

𝑑𝑡
+ 𝑥 = 𝑓 𝑡  

τ: Time constant 

𝑓 𝑡 :  Input (quantity to be measured) 

𝑥: Output (instrument response) 

1st Order Systems with Step Input 

 𝑓 𝑡 = 𝐾𝑢(𝑡) 

𝑢 𝑡 =  
0   𝑡 < 0
1   𝑡 ≥ 0

    

 

 

ds 

 
𝜏
𝑑𝑥

𝑑𝑡
+ 𝑥 = 𝐾𝑢(𝑡) 

𝑥 0 = 𝑥0 

Input 

Output 
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Transfer function G(s) for 

First Order System (additional example) 

• A good example of a first-order element is provided by a 

temperature sensor with an electrical output signal, e.g. a 

thermocouple or thermistor.  

• The bare element (not enclosed in a sheath) is placed inside 

a fluid 

•  Initially at time t = 0− , the sensor temperature is equal to the 

fluid temperature, i.e. T(0−) =TF(0−).  

• If the fluid temperature is suddenly raised at t = 0, the sensor 

is no longer in a steady state, and its dynamic behavior is 

described by the   heat balance equation:  

   rate of heat inflow − rate of heat outflow=  

     rate of change of sensor heat content 

 

• rate of heat inflow − rate of heat outflow= rate of 

change of sensor heat content 

• Assuming that TF > T, then the rate of heat outflow will 

be zero, and the rate of heat inflow W will be proportional 

to the temperature difference (TF − T). we have: 

•  Rate of heat inflow  :  W = UA (TF − T) watts ;  

Where  U-  [W m^−2 °C−1] is the overall heat transfer 

coefficient between fluid and sensor 

and A is the effective heat transfer area [m^2].  

• The increase of heat content of the sensor is  

• MC [T − T(0−)] joules, where M –is the sensor mass [kg] 

and C –is the specific heat of the sensor material [J kg−1 

°C−1]  
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Laplace 

• Thus, assuming M and C are constants: 

 

 

• Defining ΔT = T − T(0−) and ΔTF = TF − TF(0−) to be 

the deviations in temperatures from initial steady-state 

conditions, the differential equation describing the sensor 

temperature changes is 

 

• i.e.  

 

 

• This is a linear differential equation in which dΔT/dt 

and ΔT are multiplied by constant coefficients; the 

equation is first order. 

•  The quantity MC/UA has the dimensions of time and is 

referred to as the time constant τ for the system 
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• The differential equation is now: 

 
• While the above differential equation is a perfectly 

adequate description of the dynamics of the sensor, it is 

not the most useful representation.  

• The transfer function based on the Laplace transform of 

the differential equation provides a convenient 

framework for studying the dynamics of multi-element 

systems. 

 

• where ΔT(0−) is the temperature deviation at initial 

conditions prior to t = 0.  

• By definition, ΔT(0−) = 0, giving:  

• i.e. 

• The transfer function G(s): 

 

 

 

• The above transfer function only relates changes in 

sensor temperature to changes in fluid temperature.  

• The overall relationship between changes in sensor 

output signal O and fluid temperature is: 
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• Thus for a copper–constantan thermocouple measuring 

small fluctuations in temperature around 100 °C, ΔE/ΔT 

is found by evaluating dE/dT at 100 °C to give ΔE/ΔT = 

35 μV /°C.  

• Thus if the time constant of the thermocouple is 10s the 

overall dynamic relationship between changes in e.m.f. 

and fluid temperature is: 

 

First Order System -Electrical 
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. 

 

First Order System -Mechanical 

First order instrument 

characteristic 
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2nd Order Systems 
 Example: 

 Spring – mass damper 

 RLC Circuits 

 Accelerometers 

 

 Mathematical Model: 
 𝑑2𝑥

𝑑𝑡2
+ 2𝜁𝜔𝑛

𝑑𝑥

𝑑𝑡
+ 𝜔𝑛

2𝑥 = 𝑓 𝑡  

𝜁 Damping ratio (dimensionless) 

𝜔𝑛  Natural frequency (1/s) 

𝑓 𝑡 :  Input (quantity to be measured) 

𝑥: Output (instrument response) 

 

Mass–spring–damper model of 

elastic force sensor (2nd order) 

 
• The elastic sensor which converts a force input F into a 

displacement output x, is a good example of a second-

order element.  

• The diagram is a conceptual model of the element, 

which incorporates: a mass m [kg], a spring of 
stiffness k   [Nm^−1], and a damper of constant λ  [N 
s m^−1].  

• The system is initially at rest at time t = 0− so that the 

initial velocity x(0−) = 0 and the initial acceleration  

     y(0−) = 0. 
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• This is a second-order linear differential equation 

Linear second-order 
differential equation 

• Transfer function for a second-order element 

 

 

 

• Similar to series RLC circuit 

Second Order System -Electrical 
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2nd Order Systems with step input 

 𝑓 𝑡 = 𝐾𝑢(𝑡) 

𝑢 𝑡 =  
0   𝑡 < 0
1   𝑡 ≥ 0

    

 

 

ds 
 𝑑2𝑥

𝑑𝑡2
+ 2𝜁𝜔𝑛

𝑑𝑥

𝑑𝑡
+ 𝜔𝑛

2𝑥 = 𝐴𝑓 𝑡  

𝜁 Damping ratio (dimensionless) 

𝜔𝑛  Natural frequency (1/s) 

𝑓 𝑡 :  Input (quantity to be measured) 

𝑥: Output (instrument response) 

𝐴: Arbitrary constant 

Frequency Response (1st order) 
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Frequency Response (2nd order) 

 

Example – Automobile Accelerometer 
 Consider the accelerometer used in seismic and 

vibration engineering to determine the motion 
of large bodies to which the accelerometer is 
attached. 

 The acceleration of the large body places the 
piezoelectric crystal into compression or tension, 
causing a surface charge to develop on the 
crystal.  

 The charge is proportional to the motion. As the 
large body moves, the mass of the 
accelerometer will move with an inertial 
response.  

 The stiffness of the spring, k, provides a restoring 
force to move the accelerometer mass back to 
equilibrium while internal frictional damping, c, 
opposes any displacement away from 
equilibrium. 

m 

k 

c 

xi xo 

Piezoelectric 
crystal 


