BZU-ECE 2/26/2016

ENEE4304 Instrumentation & Measurement

Instrumentation and
Measurements
ENEE4304

L4

Dynamic-Performance-
Characteristics

Dynamic Performance

U The dynamic characteristics of a
measuring instrument describe its
behavior between the time a
measured quantity changes value and
the time when the instrument output
attains a steady value in response.

U Because dynamic signals vary with
time, the measurement system must
be able to respond fast enough to
keep up with the input signal.

U Further, we need to understand how
the input signal is applied to the
sensor because that plays a role in
system response.
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LZero Order Systems
LNon-Zero Order Systems
» 1t order
> 2nd order
> ...
» Nth order

In any linear, time-invariant measuring system, the
following general relation can be written between input
and output for time t > O:
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where qi is the measured quantity, qO is the output
readingand a0 ... an, b0 ... bm are constants.

only certain special, simplified cases of it are applicable
in normal measurement situations.

The major point of importance is to have a practical
appreciation of the manner in which various types of
instruments respond when the measurand applied to
them varies.
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 If we limit consideration to that of step changes in the
measured quantity only, then equation reduces to:

d"qo d" g dgo
an " + an—1 T +---+ HII + aogo = bogi

» Further simplification can be made by taking certain
special cases the equation, which collectively apply to
nearly all measurement systems.

Mechanical Zero-Order Systems

U The simplest model of a measurement

l,
system is the zero-order system model. ! &
Q This is represented by the zero-order {r [®] d
differential equation: —
p
ax=f(t) © X0
. x(/l, = 1/,
X=an(t)=Kf (t) K =1/,

0

U K is the static sensitivity or steady gain of the
system.

U It is a measure of the amount of change in
the output in response to the change in the
input.
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Mechanical Zero-Order Systems

L
Qn a zero-order system, the ,e ! G

output responds to the input ry y
signal instantaneously. {f T

QIf an input signal of ( X
magnitude f(t)=A were XV, = o/,
applied, the instrument would
indicate KA. K =1/,

QO The scale of the measuring 3, x = (1)
device would normally be wo L £ () = Kf (1)
calibrated to indicate A a,

directly.

Electrical Zero-Order Systems

N

2nd Semester 2015-2016
Instructor: Nasser Ismail



BZU-ECE 2/26/2016
ENEE4304 Instrumentation & Measurement

Zero Order Systems

U In general, systems without a
storage or dissipative capability
may be modeled as zero order
system

Input

Output

Non-zero Order Systems

U Measurement systems that contain
storage or dissipative elements do not
respond instantaneously to changes in
input.

Q In the bulb thermometer, when the
ambient temperature changes, the
liquid inside the bulb will need to store
a certain amount of energy in order for
it to reach the temperature of the
environment.

U The temperature of the bulb sensor
changes with time until this equilibrium
is reached, which accounts physically
for its lag in response.
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Non-zero Order Systems

U In general, systems with a
storage or dissipative capability
but negligible inertial forces may
be modeled using a first-order
differential equation.

Input

Output

First Order Systems

Consider the time response of a bulb thermometer for
measuring body temperature.

The thermometer, initially at room temperature, is placed

under the tongue.

Body temperature itself is constant (static) during the

measurement, but the input signal to the thermometer is

suddenly changed from room temperature to body
temperature. This, is a step change in the measured
signal.

The thermometer must gain energy from its new
environment to reach thermal equilibrium, and this take
a finite amount of time.

Body
Temperature

Room
Temperature

L

The ability of any measurement system to follow dynam
signals is a characteristic of the measuring system
components.

(@]

time

\ 4
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First Order Systems

Body
U Suppose a bulb thermometer originally at e

temperature T is suddenly exposed to a
fluid temperature T... —

Temperature

U Develop a model that simulates the
It

\ 4

thermometer output response.

time
U Rate of energy stored = Rate of energy in
Estored = Qin D m- Mass
mcC dl — hA(T _T) Q Cp- specific heat
dt O A- contact area ; h — heat
me dl +hAT = hATw transfer coeff.
dt
mC
, AT +T =T,
hA dt
First Order Systems
mC_ dT
E—+T =T,
hA dt
dT
T—+T =T,
dt S
Body
O The ratio mCp/hA has a units of seconds |
and is called the time constant, t.
Q m- sensor mass Tperare |
U Cp- specific heat of sensor material b >
time

U A- contact area ; h — heat transfer coeff.
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15t Order Systems

U Examples:
U Bulb Thermometer
U RC Circuits

U Terminal velocity

U Mathematical Model:

dx

vt

+x = f()

T Time constant
f(®): Input (quantity to be measured)

x: Output (instrument response)

1%t Order Systems with Step Input

2

f(®) = Ku(t)

u(t) Input

_(0t<0 ’ —
u®={] (34 ; e

N I 1
=1 1 2

Time, ¢

dx+ =K
‘L'E x = Ku(t)

x(0) = x,
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Transfer function G(s) for
FII’St Order System (additional example)

A good example of a first-order element is provided by a
temperature sensor with an electrical output signal, e.g. a
thermocouple or thermistor.

The bare element (not enclosed in a sheath) is placed inside
a fluid

Initially at time t = 0—, the sensor temperature is equal to the
fluid temperature, i.e. T(0-) =TF(0-).

If the fluid temperature is suddenly raised at t = 0, the sensor
is no longer in a steady state, and its dynamic behavior is

Output
(o]

described by the heat balance equation:
rate of heat inflow - rate of heat outflow=
rate of change of sensor heat content

Figure 4.1 Temperature
canenr in Auid

* rate of heat inflow — rate of heat outflow= rate of
change of sensor heat content

* Assuming that TF > T, then the rate of heat outflow will
be zero, and the rate of heat inflow W will be proportional
to the temperature difference (TF — T). we have:

* Rate of heat inflow : W =UA (TF - T) watts ;

Where U- [W m”-2 °C-1] is the overall heat transfer

coefficient between fluid and sensor

and A is the effective heat transfer area [m”2].

+ The increase of heat content of the sensor is

* MC [T - T(0-)] joules, where M —is the sensor mass [kg]

and C —is the specific heat of the sensor material [J kg—1
OC_l] ()umg

i

Figure 4.1 Temperature
sensor in fluid.
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rate of increase of sensor heat content = MCd— [T— T(0-)]
t

. dAT

MC dAT

dAT
T—— + AT = AT,
dt

T[SAT(s) — AT(0-)] + AT(s) = AT,.(s)

Laplace

tsAT(5) + AT(5) = AT,(s)

Thus, assuming M and C are constants:

rate of increase of sensor heat content = MCd— [T - T(0-)]
t

Defining AT =T - T(0-) and ATF = TF - TF(0-) to be
the deviations in temperatures from initial steady-state
conditions, the differential equation describing the sensor
temperature changes is

) dAT
{_.-'rfﬂ_ﬂ T:; —AT)= ,-’lrde—
ie. !
MC dAT
—— + AT=AT;
Ud dt

This is a linear differential equation in which dAT/dt
and AT are multiplied by constant coefficients; the
equation is first order.

The quantity MC/UA has the dimensions of time and is
referred to as the time constant 1 for the system
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* The differential equation is now:
dAT

T—— + AT = AT
dt

» While the above differential equation is a perfectly
adequate description of the dynamics of the sensor, it is
not the most useful representation.

» The transfer function based on the Laplace transform of
the differential equation provides a convenient
framework for studying the dynamics of multi-element
systems.

T[sAT(s) — AT(0-)] + AT(s) = AT;(s)

* where AT((J—) IS Ule lEeHiperdwle ueviauuil dat nnual

conditions prior to £= 0.

+ By definition, A7{0-) = 0, giving: LSAT(s) + AT(s) = AT(s)

. i.e. (s + 1)AT(s) = AT, (s)
» The transfer function G(s):

‘*_\?:{:S) 1 ATe(s) : 1 Al'(s)
+ T8

Gs)=———=
ATp(s) 1+1s

First-order
function block

* The above transfer function oniy reiates cnanges in
sensor temperature to changes in fluid temperature.

* The overall relationship between changes in sensor
output signal O and fluid temperature is:

AO(s) A0 AT(s)
ATi(s) AT ATu(s)
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* Thus for a copper—constantan thermocouple measuring
small fluctuations in temperature around 100 °C, AE/AT
is found by evaluating dE/dT at 100 °C to give AE/AT =
35 uV /°C.

» Thus if the time constant of the thermocouple is 10s the
overall dynamic relationship between changes in e.m.f.
and fluid temperature is:

ATy(s) 1 AT(s)
—5 e

1 +1s

First=order
function block
Euv

AE{S} 1 10000 ;\'nc—
——— =35 x—— A e
AT (s) 1+ 10s
5000 + g
\‘Slopu*
35uveEC
- - T °C
[} 100 200
First Order System -Electrical
Electrical
1,=RC=R,C,; R.,=R, C,=C
V= V=iR
. dg _ Cav
Charge g = CV, ti=d =20
1'|r!:_c q , current i1 df df
RC% +V="Vy
ie.
a . .
tg, + V= Vo T =RC
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First Order System -Mechanical

Mechanical
Damper A
I
Fin A 1
- ? . Ty = % =RyCy: Ry=A Cy= %
- A—
dt
Spring &
! ! I
—> x = F

Fu—F= l%, AN s m™' = damping constant

Displacement x = % k N m™ = spring stiffness

A dF
k ar TE= I

dr A
T.UE-'_F:‘F;N! W=7

First order instrument
characteristic

Magnitude

/ Messured quantity

7
,’{ i \- Instrument output
L] e Bt ah« St
/ |
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_ Y = | S = <
04l t=31,f(f)=1-¢ ‘_09:
t=41, (1) =1=¢" =098
02 t=57,f()=1-€7=099
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T
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2" Order Systems
U Example:

U Spring — mass damper
U RLC Circuits

U Accelerometers

O Mathematical Model:

d?x dx 5
W+2{wnz+wn x = f(t)

4 Damping ratio (dimensionless)
w, Natural frequency (1/s)

f(®): Input (quantity to be measured)

x: Output (instrument response)

Mass—spring—damper model of
elastic force sensor (2" order)

» The elastic sensor which converts a force input F into a
displacement output X, is a good example of a second-
order element.

» The diagram is a conceptual model of the element,
which incorporates. a mass m [kg], a spring of
stiffness k [NmA-1], and a damper of constant A [N
s mh-1].

* The system is initially at rest at time t = 0- so that the
initial velocity x(0—) = 0 and the initial acceleration

y(o _) = 0 . kx
— T
F Ma Spring k
— As
o 1
1 I
Damper 4 7
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» Thisis a second-order linear differential equation

ko
undamped natural frequency m, = .,/ — rad/s
\m

damping ratio £ = —
24 km

mik = 1-"?‘);3,- Alk = 2‘;‘:-":("].':'

1 d AY 25 d Ax A — 1 ; Linear second-order
— — +t—— Ax=—AF differential equation
w? d*  , dt k ’

Second Order System -Electrical

* Transfer function for a second-order element

. Similar to series RLC circuit

. q di
L V=iR+=+L—
e C dt

C where { = 3—3 (g = charge on the capacitance)

¥
i i
R thus I,(—{{I R(i Il__q:V
de- di  C

@, = 1/LC and E= (R/2)y/CIL.
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2" Order Systems with step input

Sl
f() = Ku(t) 16
0 t<O
u(t) = {
1t=0
d2x+2 dx+ Zx = Af(t)
= W, =+ w,°x =
dt? Sn dt " f
4 Damping ratio (dimensionless)
w, Natural frequency (1/s) L
1 2 3 4 5 6 7 g8 9 10 Ca
f(®): Input (quantity to be measured) <1, underdamping; =1, critical damping; & > 1, overdamping
X: Output (instrument response)
A: Arbitrary constant

Frequency Response (15t order)
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Frequency Response (2" order)
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Example — Automobile Accelerometer

Consider the accelerometer used in seismic and .
vibration engineering to determine the motion

of large bodies to which the accelerometer is ‘
attached. M

The acceleration of the large body places the 00
piezoelectric crystal into compression or tension, :
causing a surface charge to develop on the

crystal.

Piezoelectric

crystal
,_XLJ

m ¢

The charge is proportional to the motion. As the
large body moves, the mass of the
accelerometer will move with an inertial
response.

Al
C
11
P |
VA VAVAVAVA N
k

The stiffness of the spring, k, provides a restoring
force to move the accelerometer mass back to
equilibrium while internal frictional damping, c,
opposes any displacement away from
equilibrium.
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